Течения мирового океана

Теплые и холодные водные потоки

Необходимо учитывать, что понятия о «холодных» или «тёплых» течений являются условными определениями. Так, несмотря на то, что температурные показатели водных потоков Бенгельского течения, которое протекает вдоль мыса Доброй Надежды, составляют 20°С, оно считается холодным. А вот Нордкапское течение, которое является одним из ответвлений Гольфстрима, с температурными показателями от 4 до 6°С, является тёплым.

Происходит это потому, что холодное, тёплое и нейтральное течения получили свои названия исходя из сравнения температуры своей воды с температурными показателями окружающего их океана:

  • Если температурные показатели водного потока совпадают с температурой окружающих его вод, такое течение называют нейтральным;
  • Если температура течений ниже окружающей воды, их называют холодными. Обычно они текут из высоких широт в низкие (например, Лабрадорское течение), или из районов, где из-за большого стока рек океаническая вода имеет пониженную солёность поверхностных вод;
  • Если температура течений теплее окружающей их воды, то их называют тёплыми. Они двигаются из тропических в приполярные широты, например, Гольфстрим.

КАТАСТРОФА НА ПОБЕРЕЖЬЕ ИНДИЙСКОГО ОКЕАНА

26 декабря 2004 г. в Индийском океане у западной оконечности острова Суматра произошло 9-балльное землетрясение. Вертикальные смещения океанического дна породили мощные волны цунами, обрушившиеся на многочисленные острова Индонезии, побережье Индокитая, Никобарские и Андаманские острова, полуостров Индостан, остров Шри-Ланка, а также на Кению и Сомали. У берегов Индонезии чудовищной силы волна достигала высоты более 20 м, она сметала всё на своём пути, смыла сотни городов и сёл, погибло около 500 тыс. человек.

В морях высота волн небольшая, например, в Средиземном море волны вырастают только до пяти метров. Наибольшие волнения наблюдаются в умеренных широтах, которые даже получили название «ревущие сороковые», и в океаническом кольце Южного полушария, где 25-метровые волны длиной в 400 м передвигаются со скоростью 20 м/с.

При подходе к берегу нижняя часть волны тормозит о дно, её верхняя часть опрокидывается, и гребень разбивается на мелкие брызги. Разрушаясь у берега, волны образуют прибой . У обрывистых берегов волны с огромной силой ударяют о скалы, и вверх взлетают фонтаны брызг. Разрушительная сила прибоя очень велика.

Загрязнения и экологические проблемы вод мирового океана

В наше время огромной проблемой является загрязнение вод. Главными его источниками являются выбросы бытовых и промышленных вод в Мировой океан.

Крупнейшие площади загрязнения находятся в прибрежных зонах. Помимо стоков от различных промышленных предприятий немалый вклад в загрязнение Мирового океана вносят и бытовые стоки – например, многие страны не имеют запрета на вывод системы канализации в море.

С быстрым ростом городов растут и масштабы загрязнения. Мировой океан велик, но даже ему тяжело справляться с такими количествами отходов самого разного вида. Экологи бьют тревогу: уничтожаются новые виды и подвиды животных и растений, что наносит непоправимый вред океану

.

Борьба со сбросом мусора ведётся при помощи системы труб, которая отвечает за его сброс подальше от прибрежных зон. Но проблемы это не решает. К тому же, этот способ не работает для ликвидации последствий аварий – например, на танкерах, перевозящих нефть.

Мировой океан действительно важен для планеты. И в силах людей сделать всё, чтобы он продолжал питать и оберегать Землю.

Значение Мирового океана

Мировой океан играет ключевую роль в жизни нашей планеты. Он является колыбелью жизни на Земле. Там обитает около 4/5 всех живых существ планеты.

Роль мирового океана

  • Мировой океан — основное звено круговорота воды в природе. Он определяет водный баланс Земли, является важным источником возобновляемых вод.
  • Оказывает влияние на климат, почву, влагу, животный и растительный мир.
  • Является одним из основных источников пищи и условием жизни на Земле. Имеет богатую флору и фауну.
  • Источник полезных ископаемых и ресурсов.
  • Очищает воздух и поставляет в атмосферу насыщенный кислород.
  • По мировому океану проходят морские пути.
  • Источник пресной воды.

Течения

Течениями называют перемещения огромной массы воды в направленном движении по определенному руслу. Вот почему их иногда называют “реками океанов”. Скорость разных течений изменчива. Одни двигаются 1 км. в час, другие разбегаются аж до 9 км. в час. Еще одна особенность – в разных частях света направление потоков отличается. В Северном полушарии все движутся по часовой стрелке, в Южном – против.

Рис. 3. Течения мирового океана

Течения играют огромную роль. Они бывают теплые и холодные и во многом определяют климат континентов. Самым теплым течением считается Гольфстрим в Атлантическом океане.

Что мы узнали?

Мировой океан – это огромная акватория планеты Земля. Закономерности в изменении погоды и климатические условия суши формируются под воздействием Мирового океана. Основные его свойства это: соленость, температура, движение водных масс, образование льда. Мировая акватория включает: Тихий, Атлантический, Индийский, Северный ледовитый океаны, все проливы и заливы. Течения – это огромные массы воды, температура которых может отличаться от среднего значения в Мировом океане. Они влияют на климат континентов.

  1. /10

    Вопрос 1 из 10

Движение ламинарное и турбулентное

В природе существуют два режима движения жидкости, в том числе и воды: ламинарное и турбулентное. Ламинарное движение — параллельноструйное. При постоянном расходе воды скорости в каждой точке потока не изменяются во времени ни по величине, ни по направлению. В открытых потоках скорость от дна, где она равна нулю, плавно возрастает до наибольшей величины на поверхности. Движение зависит от вязкости жидкости, и сопротивление движению пропорционально скорости в первой степени. Перемешивание в потоке носит характер молекулярной диффузии. Ламинарный режим характерен для подземных потоков, протекающих в мелкозернистых грунтах.

В речных потоках движение турбулентное. Характерной особенностью турбулентного режима является пульсация скорости, т. е. изменение ее во времени в каждой точке по величине и направлению. Эти колебания скорости в каждой точке совершаются около устойчивых средних значений, которыми обычно и оперируют гидрологи. Наибольшие скорости наблюдаются на поверхности потока. В направлении ко дну они уменьшаются относительно медленно и в непосредственной близости от дна имеют еще достаточно большие значения. Таким образом, в речном потоке скорость у дна практически не равна нулю. В теоретических исследованиях турбулентного потока отмечается наличие у дна очень тонкого пограничного слоя, в котором скорость резко уменьшается до нуля.

Турбулентное движение практически не зависит от вязкости жидкости. Сопротивление движению в турбулентных потоках пропорционально квадрату скорости.

Экспериментально установлено, что переход от ламинарного режима к турбулентному и обратно происходит при определенных соотношениях между скоростью vср и глубиной Hср потока. Это соотношение выражается безразмерным числом Рейнольдса

Для открытых каналов критические числа Рейнольдса, при которых меняется режим движения, изменяются примерно в пределах 300-1200. Если принять Re = 360 и коэффициент кинематической вязкости = 0,011, то при глубине 10 см критическая скорость (скорость, при которой ламинарное движение переходит в турбулентное) равна 0,40 см/с; при глубине 100 см она снижается до 0,04 см/с. Малыми значениями критической скорости объясняется турбулентный характер движения воды в речных потоках.

По современным представлениям (А. В. Караушев и др.), внутри турбулентного потока в различных направлениях и с различными относительными скоростями перемещаются элементарные объемы воды (структурные элементы), обладающие различными размерами. Таким образом, наряду с общим движением потока можно заметить движение отдельных масс воды, в течение короткого времени ведущих как бы самостоятельное существование. Этим, очевидно, объясняется появление на поверхности турбулентного потока маленьких воронок — водоворотов, быстро появляющихся и так же быстро исчезающих, как бы растворяющихся в общей массе воды. Этим же объясняется не только пульсация скоростей в потоке, но и пульсации мутности, температуры, концентрации растворенных солей.

Турбулентный характер движения воды в реках обусловливает перемешивание водной массы. Интенсивность перемешивания усиливается с увеличением скорости течения. Явление перемешивания имеет большое гидрологическое значение. Оно способствует выравниванию по живому сечению потока температуры, концентрации взвешенных и растворенных частиц.


Рис. 65. Примеры кривой водной поверхности потока. а — крикая подпора, б — кривая спада (по А. В. Караушеву).

Интересные факты

  1. Начало изучения движений Мирового океана положил Христофор Колумб. Он первым открыл область пассатных ветров, вызываемых ими течений и дал описание их движения.
  2. Итальянский мореплаватель и купец Джовани Кабото (Джон Кабот) использовал скорость Гольфстрима, ускорив свое возвращение в Англию. До этого в Лондоне не знали, что такое течение существует.
  3. До XVI в. для изучения течений служили корабли мореплавателей. По их отклонению от курса определялась сила, скорость и направления движения водных масс. Это называется «навигационный метод исследования».
  4. «Титаник» столкнулся с айсбергом, который принес Гольфстрим.
  5. Холодные течения из высоких широт представляют опасность даже для современного судоходства, потому что могут донести осколки крупных айсбергов даже до берегов Африки.
  6. Постоянные океанические потоки мореплаватели использовали для «бутылочной почты».

Мировой океан и его потоки являются регуляторами климата на планете и не дают ей превратиться в бесплодную пустыню в южной части или в ледяную глыбу на полюсе.

Ледники

Посмотрите на карту или на глобус: большая часть материка Антарктида и островов в Арктике, в том числе самый большой остров нашей планеты Гренландия, а также высокогорья закрашены белым цветом. Так принято обозначать не тающие летом льды — ледники. Именно в ледниках законсервирована большая часть пресной воды на Земле, а если бы они вдруг растаяли, уровень воды в морях и океанах поднялся бы на несколько метров, и моря затопили бы огромные участки суши. Многие думают, что ледники — это скопление замёрзшей воды. Это не совсем так. В местах, где скапливаются многометровые толщи снега, он под собственной тяжестью начинает уплотняться и превращается сначала в зернистый фирн, а потом в прозрачный зеленоватый лёд. Ледники бывают горные или покровные. Вершины высоких гор покрыты вечными льдами, даже если они находятся вблизи экватора, как высшая точка Африки вулкан Килиманджаро или ряд вершин в Андах.

Антарктида

Мощные ледяные щиты толщиной в несколько километров покрывают не только южный материк Антарктиду, но и такие острова, как Гренландия на севере. В горах ледники «стекают» вниз по склону, а ледяные щиты полярных островов «наступают», то есть движутся вперёд. Скорость движения небольших горных ледников около 100 м в год, а огромных ледников Антарктиды достигает до 10 м в сутки.

В истории Земли было много ледниковых периодов, когда климат был холоднее, чем сейчас, и многокилометровые ледяные щиты существовали и близ полюсов и существенно южнее. Учёными лучше всего изучены оледенения сравнительно недавнего времени — за последний миллион лет, когда территория значительной части севера Евразии и Северной Америки четырежды покрывалась льдом толщиной в несколько километров.

Максимальное из оледенений, Днепровское, происходило 230—100 тыс. лет назад. В ту эпоху существовало два центра оледенения. Самый крупный центр находился на территории Скандинавского полуострова, другой — на Новой Земле и на севере Урала. Языки ледника спускались по долинам Днепра и Дона до широты современного г. Днепропетровска.

Карта оледенения Земли

Последнее по времени оледенение, Валдайское, закончилось около 11 тыс. лет назад, когда в Древнем Египте, Индии, Китае уже существовали развитые цивилизации. Во время ледниковых периодов наступающие ледники «утюжили» равнины, а отступающие «бросали» огромные камни, валуны. Воды отступающего, то есть тающего, ледника углубляли речные долины и овраги. В тех местах, где когда-то находился ледник, в углублениях в земной поверхности осталось много озёр.

Поделиться ссылкой

Свойства морской воды

Температура воды в океане зависит от географической широты, иными словами, чем ближе к экватору, тем вода теплее. Но сильнее всего прогревается вода, до 35 °C, в замкнутых внутренних морях, особенно в Красном море. Самая холодная вода, меньше 2 °C, — в полярных морях и океанах. Вода во всех океанах и морях солёная, но солёность их разная. Самые солёные моря — Красное и Аравийское, а самые пресные — Балтийское и моря Северного Ледовитого океана.

Солёность Кара-Богаз-Гола составляет 164 %. Это в 4 раза выше, чем у самого солёного моря в Мировом океане — Красного, но почти вдвое меньше, чем у самого солёного водоёма Земли — Мёртвого моря.

В среднем на каждый литр воды в океане приходится около 35 г различных солей (35%), преимущественно это обыкновенная поваренная соль. Морскую соль обычно можно употреблять в пищу. Но не бывает правил без исключений. На восточном берегу Каспийского моря в залив Кара-Богаз-Гол, что переводится как «чёрная пасть», расположенный почти на 35 м ниже уровня моря, непрерывно льётся водопад каспийской воды. Она там полностью испаряется, образуя рассол, формирующий залежи мирабилита. Когда русские моряки в XIX в. впервые вошли в этот залив, у кока кончилась соль, и он решил посолить борщ солью, извлечённой из воды. Последствия запомнились всем надолго: ведь мирабилит, или английская соль, сильное слабительное.

Классификация течений мирового океана

По температуре

Различают:

  1. Теплые. Для них характерна более низкая температура окружающих водных масс по сравнению с течением. В местностях, где господствует данный тип, температура среды повышается. Направление потока происходит от экватора к полюсам (или из теплых широт в холодные). Еще одна особенность — увеличение уровня осадков. Например, самое большое – Гольфстрим. Берет свое начало близ берегов США, Канады, направляясь к Европейским странам (в том числе к Скандинавии). Затем становится Североатлантическим, его влияние распространяется на Баренцево море (которое не замерзает).

  2. Холодные. Сопровождается переносом холодных масс в теплые океанические воды (от полюсов к экватору). Данные потоки сопровождаются уменьшением количества осадков, снижением температуры. Например, Перуанское течение, берущее начало в водах Южной Америки. Воздух не насыщен влагой, отсюда периоды длительного отсутствия осадков на континенте (пустыня Атакама).

  3. Нейтральные течения. При третьем типе температура потока и воды не отличается. Например, Южное Экваториальное течение. Начинается на Галапагосских островах, затем перемещается к Новой Гвинее, омывает берега Австралии – это Тихоокеанское течение.

По расположению

В эту группу относят:

  1. Поверхностные. Распространяются в поверхностном слое (до пятнадцати метров в глубину). Зачастую их появление – это результат суммации дрейфовых и градиентных потоков.

  2. Глубинные. Происходят на глубине более сотни метров, их генез во многом не ясен. Очевидно, что здесь преобладает влияние рельефа, плотности воды и других термохалинных характеристик (внутренних). Направление здесь противоположно поверхностному течению. Примеры: течение Ломоносова, Кромвеля — оба развиваются при наличии мощного северного экваториального течения в Атлантическом и Тихом океане соответственно.

  3. Придонные. Распространяются у дна, зависят от характера рельефа. Их происхождение связано с приливами, штормовыми волнами, сейшами (стоячие волны). Например, воды Северного моря, проникающие в Балтику.

По происхождению

Классификация по генезу или физической природе представлена:

Ветровой циркуляцией:

  • дрейфовые течения;

  • градиентные течения:

бароградиентные – появление наклона воды в ответ на изменение атмосферного давления (Флоридское течение);

конвекционные (плотностные) – обусловлены разной плотностью воды на одном уровне (Куросио, принадлежащее к тихоокеанскому бассейну);

Приливные

Дрейфовые течения развиваются под влиянием ветра. Воздушный поток – динамическая структура, где скорость и давление непостоянны. Это ведет к появлению шероховатостей, завихрений водной поверхности. Возрастает сила трения, образуются дрейфы. Градиентные потоки подразумевают появление градиента – разницы давлений.

По времени действия

Классификация по устойчивости изменения направления — бывают устойчивые (постоянные) и неустойчивые. Для первых характерно стабильное направление на протяжении длительного промежутка времени (пассатные течения). Вторые обусловлены нерегулярным влиянием сторонних сил (например, ветра).

Еще одна разновидность – периодические морские течения, связанные с приливами (Гудзонов пролив в Канаде, где интервал между приливами восемь суток).

Реки посреди океана

Океаническими или морскими течениями называют крупномасштабные перемещения водных масс Мирового океана со скоростью от 1 до 9 км/ч. Движутся эти потоки не хаотично, а в определённом русле и направлении, что является главной причиной того, почему их иногда называют реками океанов: ширина самых крупных течений может составлять несколько сотен километров, а длина достигать не одну тысячу.

Установлено, что водные потоки движутся не прямо, а отклоняясь немного в сторону, подчиняются силе Кориолиса. В Северном полушарии почти всегда движутся по часовой стрелке, в Южном – наоборот. В то же время течения, находящиеся в тропических широтах (их называют экваториальными или пассатными), перемещаются в основном с востока на запад. Самые сильные течения были зафиксированы вдоль восточных берегов континентов.

Водные потоки циркулируют не сами по себе, а их приводит в движение достаточное количество факторов – ветер, вращение планеты вокруг своей оси, гравитационные поля Земли и Луны, рельеф дна, очертания материков и островов, разница температурных показателей воды, её плотности, глубины в различных местах океана и даже её физико-химический состав.

Из всех видов водных потоков наиболее выражены поверхностные течения Мирового океана, глубина которых нередко составляет несколько сотен метров. На их возникновение повлияли пассатные ветра, постоянно движущиеся в тропических широтах в западно-восточном направлении. Эти пассаты формируют возле экватора огромные потоки Северного и Южного Экваториальных течений. Меньшая часть этих потоков возвращается на восток, образовывая противотечение (когда движение воды происходит в противоположную от движения воздушных масс сторону). Большая часть, сталкиваясь с материками и островами, поворачивает в северную или южную сторону.

Волны в океане

Волны — колебания поверхности воды под влиянием различных сил.

Волны на море есть всегда. Очень редко возникает явление «зеркального моря», когда поверхность воды становится идеально ровной, как зеркало. Не так уж много моряков могут похвастаться тем, что они видели «зеркальное море». Чаще они рассказывают о волнах и штормах.

Существует много видов волн. Мы рассмотрим только некоторые.

Ветровые волны. Главная причина возникновения волн — ветер. Чек сильнее ветер — тем выше волны. В открытом океане даже при слабом ветре высота волн составляет 1 — 2 м. Во время штормов по океану гуляют волны высотой 6—8 м (рис. 51). А во время чрезвычайно сильных ураганов были зафиксированы волны высотой около 30 м!

При приближении к берегу волны опрокидываются. Так возникает прибой. Разрушительная сила волн прибоя так велика, что для защиты портовых сооружений, причалов, приморских набережных строят и камня или бетона мощные волноломы.

Сейсмические волны. Подводные землетрясения и извержения подводных вулканов вызывают колебания дна океана и приводят к возникновению сейсмических волн. Как круги по воде, они расходятся во все стороны от эпицентра. Такие сейсмические волны называют цунами.

Хотя «цунами» — японское слово, именно так называют сейсмические волны, в каких бы морях и океанах они ни возникали. Пока цунами движется отточки своего зарождения к берегу, оно почти не заметно: в открытом море высота этой волны составляет всего 1 м. Но чем ближе подходит волна к берегу, тем выше она становится. Высота цунами зависит от многих факторов и колеблется от 6 до 30 м

Есть свидетельства очевидцев и о цунами высотой в 100 м! Однако к таким рассказам нужно относиться с осторожностью. Цунами — это страшное зрелище, и нельзя требовать от человека, чтобы он реально оценивал обстановку и высоту волны

Обрушиваясь на берег, цунами вызывает катастрофические разрушения, уносит человеческие жизни, причиняет многомиллионные убытки. Об одной такой трагедии, которая произошла в конце 2004 г., мы уже вспоминали на одном из предыдущих уроков.

Можно ли защититься от цунами? Можно. Для этого строятся сложные сооружения, которые разбивают волну, гасят ее энергию. Однако таким образом невозможно защитить берега всех океанов. Другим способом защиты является оповещение жителей прибрежных районов о приближении волны (рис. 52.). Как только произошло подводное землетрясение, определяется местоположение его эпицентра. После этого можно определить участки побережья, которым угрожает цунами. Скорость движения волны в среднем 800 км/ч. Это значит, что при своевременном оповещении у людей есть не много времени, чтобы укрыться в безопасных районах. Беда в том, что далеко не во всех странах такая система оповещения существует.

Движение вод Мирового океана

Невероятно объемные массы воды Мирового океана имеют свойство передвигаться, зачастую они находятся в процессе постоянного движения. Главным показателем движения океанических и морских вод являются волны.

Иногда они очень маленькие и образовывают только незначительную рябь на поверхности, иногда они могут достигать нескольких метров, затапливая в острова и приморские города.

На движение вод в океанах и морях влияют три фактора: влияние ветра, движение литосферных плит, а также притяжение Луны (провоцирует отливы и приливы).

Сильный ветер может перемещать большие объемы водных масс на дальние расстояния, именно ветер формирует морские и океанические течения.

Виды морских волн

Волны могут проходить огромные расстояния, не изменяя формы и практически не теряя энергии, долго после того, как вызвавший их ветер утихнет. Разбиваясь о берег, морские волны высвобождают огрмную энергию, накопленную за время странствия. Сила непрерывно разбивающихся волн по-разному изменяет форму берега. Разливающиеся и накатывающиеся волны намывают берег и поэтому называются конструктивными. Волны, обрушивающиеся на берег, постепенно разрушают его и смывают защищающие его пляжи. Поэтому они называются деструктивными.

Размытый берег прибрежного посёлка

Низкие, широкие, закругленные волны вдали от берега называются зыбью. Волны заставляют частички воды описывать кружки, кольца. Размер колец уменьшается с глубиной. По мере приближения волны к покатому берегу частицы воды в ней описывают все более сплющенные овалы. Приближаясь к берегу, морские волны больше не могут замкнуть свои овалы, и волна разбивается. На мелководье частицы воды больше не могут замкнуть свои овалы, и волна разбивается. Мысы образованы из более твердой породы и разрушаются медленнее, чем соседние участки берега. Крутые, высокие морские волны подтачивают скалистые утесы у основания, образуя ниши. Утесы порой обрушиваются. Сглаженная волнами терраса — это все, что остается от разрушенных морем скал. Иногда вода поднимается по вертикальным трещинам в скале до вершины и вырывается на поверхность, образуя воронку. Разрушительная сила волн расширяет трещины в скале, образуя пещеры. Когда волны подтачивают скалу с двух сторон, пока не соединятся в проломе, образуются арки. Когда верх арки падает в море, остаются каменные столбы. Их основания подтачиваются, и столбы обрушиваются, образуя валуны. Галька и песок на пляже — это результат эрозии.

Деструктивные волны постепенно размывают берег и уносят песок и гальку с морских пляжей. Обрушивая всю тяжесть своей воды и смытого материала на склоны и обрывы, волны разрушают их поверхность. Они вжимают воду и воздух в каждую трещину, каждую расщелину, часто с энергией взрыва, постепенно разделяя и ослабляя скалы. Отколовшиеся обломки скал используются для дальнейшего разрушения. Даже самые твердые скалы постепенно уничтожаются, и суша на берегу изменяется под действием волн.
Волны могут разрушать морской берег с поразительной быстротой. В графстве Линкольншир, в Англии, эрозия (разрушение) надвигается со скоростью 2 м в год. С 1870 г., когда был построен самый большой в США маяк на мысе Гаттерас, море смыло пляжи на 426 м в глубину побережья.

Движения вод Мирового океана

Важность такого явления как океанические течения в планетарном масштабе сложно переоценить. Движение потоков воды оказывает влияние на:

  • климатические условия;
  • погодные условия;
  • морских обитателей.

Мировой океан часто представляют как гигантскую тепловую установку, которая функционирует благодаря энергии Солнца. Это естественное биологическое устройство образует бесконечный обмен водой между поверхностными и глубинными пластами океана. За счет этого происходит обеспечение растворенным в воде кислородом, который воздействует на жизненные циклы обитателей морских глубин.

Рис. 1. Течения Мирового океана.

Этот процесс хорошо иллюстрирует Перуанское течение, которое преобладает в водах Тихого океана. Из-за подъема вод из глубин, на океанической поверхности формируется планктон животного и растительного происхождения. Это приводит к организации пищевой цепи. При этом описываемая область становится самой продуктивной с точки зрения возникновения жизни в Мировом океане.

Однако, происходит и так, что холодный поток может стать теплым. При этом средний температурный диапазон микроклимата возрастает на несколько градусов. Результатом этого является то, что на землю проливаются теплые тропические ливни, которые, уничтожают рыбу, для которой свойственно обитание в холодных температурах.

Рис. 2. Последствия попадания теплой воды в холодное течение.

Морские течения

Вода в океане постоянно находится в движении. Два раза в день уровень воды во всех морях повышается и два раза понижается. Это явление называется приливом. Высота прилива в открытом океане обычно около 1 м, а у берегов вода может подниматься до 13,5 м в Бретани (Франция) и даже на 21,6 м в заливе Фанди (Канада). Движение воды иногда принимает форму «рек в океане» — морских течений.

Если температура воды течения выше, чем у окружающей его воды, оно считается тёплым, если ниже — холодным. К северу и к югу от экватора в Атлантическом, Индийском и Тихом океанах с востока на запад устремляются мощные потоки тёплых пассатных течений с межпассатными противотечениями между ними. Вокруг же Антарктиды мчится холодное течение Западных Ветров. Роль этих течений невозможно переоценить.

Течение Гольфстрим

 Тёплые течения приносят осадки и смягчают климат, холодные течения делают его суровее. Благодаря холодному течению Куросио на японском о. Хоккайдо проводили зимние Олимпийские игры, в то время как на соседнем о. Хонсю люди ходили в летних платьях. Из-за обогревания Европы тёплым Гольфстримом широколиственные леса там растут на тех же широтах, на которых в Северной Америке ледяное Лабрадорское течение обусловливает появление тундры.

Холодные течения — Бенгальское, Перуанское и Калифорнийское — ответственны за появление пустынь на тех материках, возле которых они проходят. Но иногда и с пустынями происходят чудеса. Когда к западному берегу Южной Америки, оттеснив Перуанское, пробивается тёплое течение Эль-Ниньо, после нескольких дней проливных дождей пустыня Атакама преображается — повсюду появляются травы и цветы.

Средняя скорость в живом сечении. Формула Шези

Для вычисления средней скорости потока при отсутствии непосредственных измерений широко применяется формула Шези. Она имеет следующий вид:

ср

Величина коэффициента С не является величиной постоянной. Она зависит от глубины и шероховатости русла. Для определения С существует несколько эмпирических формул. Приведем две из них:

формула Манинга

формула Н. Н. Павловского
где n — коэффициент шероховатости, находится по специальным таблицам М. Ф. Срибного. Переменный показатель в формуле Павловского определяется зависимостью.

Из формулы Шези видно, что скорость потока растет с увеличением гидравлического радиуса или средней глубины. Это происходит потому, что с увеличением глубины ослабевает влияние шероховатости дна на величину скорости в отдельных точках вертикали и тем самым уменьшается площадь на эпюре скоростей, занятая малыми скоростями. Увеличение гидравлического радиуса приводит и к увеличению коэффициента С. Из формулы Шези следует, что скорость потока растет с увеличением уклона, но этот рост при турбулентном движении выражен в меньшей мере, чем при ламинарном.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector