Вторичные энергетические ресурсы (вэр)

1.2 Роль и значение ТЭК для экономики и внешней торговли России

Топливно-энергетический комплекс тесно связаны со всей промышленностью страны. На использование (добычу, транспорт, перерарботку) ТЭР расходуется более 20% всех денежных средств.

На отрасли занятые использованием ТЭР приходится 30% основных фондов и 30% стоимости промышленной продукции России. Предприятия ТЭК используют 10% продукции машиностроительного комплекса, 12% продукции металлургии, потребляет 2/3 труб в стране, дает больше половины экспорта РФ и значительное количество сырья для химической промышленности .

Топливно-энергитические ресурсы — важнейший экспортный товар России, обеспечивающий основную долю валютных поступлений, формирующий бюджет нашей страны, поддерживающий ее авторитет на международной арене.

Рис.2.Доля энергоресурсов в товарной структуре экспорта России

Нефть важнейший продукт потребления на внутреннем рынке. Потребление нефти внутри РФ оценивается долей около 60%

Нефть основное сырье, для нефтеперерабатывающей, нефтехимической и химической промышленности, продукты первичной переработки нефти (мазут) — важное сырье для топливной промышленности

Кроме этого нефть важнейший экспортный товар для России, от которого во много зависит наполняемость федерального бюджета (рисунок 3).

Рис.3 Динамика экспорта нефти из России

Россия — крупнейший в мире экспортёр газа, на её долю приходится более 20% мировых межгосударственных поставок.

Экспорт природного газа из РФ впервые за последние годы сократился — на 2,1% по сравнению с 2005 г.; он составил 182,8 млрд. куб. м, или около 31% добытого (рисунок 4).

Рис.4 Динамика экспорта газа из России

Россия входит в число лидеров по экспорту угля на мировой рынок, поставляя его в 45 стран мира.

Так и энергетического, занимая третье место по объёмам экспорта угля в мире после Австралии и Индонезии. С 1999 г.

российский экспорт угля неуклонно растёт, в 2006 г. он увеличился очень существенно — на 18%, превысив 90 млн. т. . Более 80% российского угольного экспорта составляют угли Кузнецкого бассейна, отличающиеся высоким качеством. В мировом объеме экспорт российского угля составляет около 12%.

В 2006 г. российский экспорт вырос более чем на 9 % и составил, 7,36 млн. т.

Основные типы электростанций

Все электрические станции таблица ниже классифицирует в первую очередь по источникам используемой энергии.

Среди них можно выделить следующие:

  • Тепловые (ТЭС). Работают на природном топливе, а основные типы электростанций могут быть конденсационными (КЭС) и теплофикационными (ТЭЦ). Первые вырабатывают только электричество, а вторые – электроэнергию и теплоту.
  • Гидравлические – ГЭС и гидроаккумулирующие – ГАЭС, функционирующие за счет энергии воды, падающей высоты.
  • Атомные – АЭС, работающие на ядерном топливе.
  • Дизельные – ДЭС. Бывают стационарными или мобильными. Существуют мини-электростанции малой мощности, используемые в частном секторе.
  • Солнечные, ветровые, приливные и геотермальные электростанции известны как альтернативные источники электроэнергии, работающим с естественными силами природы. Они имеют ряд недостатков, связанных с климатическими условиями и другими факторами.

Каждая перечисленная электростанция представляет собой традиционные или альтернативные виды энергетики. В первом случае электричество вырабатывается на тепловых, гидро- и атомных установках. На ТЭС вырабатывается примерно 70-75% всей электроэнергии, поэтому они размещаются в местах с высоким энергопотреблением и большим количеством природных ресурсов.

ГЭС привязаны к полноводным рекам, протекающим в равнинной или горной местности. АЭС строятся в местах с большим потреблением электроэнергии, при недостатке других видов энергоресурсов. Для того чтобы понять их роль и место в общей энергетической системе, следует рассмотреть более подробно типы электростанций, используемых в России.

Основные определения и классификация ВЭР

Вторичные энергетические ресурсы (ВЭР) – энергетический потенциал продукции, отходов, побочных и промежуточных продуктов, образующихся в технологических агрегатах (установках), который не используется в самом агрегате, но может быть частично или полностью использован для энергоснабжения других потребителей. Рациональное использование ВЭР является одним из крупнейших резервов экономии топлива, способствующим снижению топливо- и энергоемкости промышленной продукции. ВЭР могут использоваться непосредственно без изменения вида энергоносителя для удовлетворения потребности в топливе и теплоте или с изменением энергоносителя путем выработки теплоты, электроэнергии, холода или механической работы в утилизационных установках. По виду энергии ВЭР разделяются на три группы (рис. 5):

  • горючие (или топливные) ВЭР;
  • тепловые ВЭР;
  • ВЭР избыточного давления (транспортировка природного газа).

Рис. 5. Классификация ВЭР

К горючим ВЭР относятся:

  • горючие отходы процессов химической и термохимической переработки углеродистого или углеводородного сырья (метановодородная фракция производства этилена, Х-масла производства капролактама, отходы гидролизного производства; отходы целлюлозно-бумажной промышленности; отходы от производства аммиака и другие);
  • горючие газы плавильных печей, доменный газ, лигнин гидролизного производства, сульфатные и сульфитные щелока целлюлозно-бумажной промышленности, сивушные масла, отработанные нефтепродукты и другие горючие ВЭР (рис. 6);
  • древесные отходы (лесосечные отходы, стволовая древесина, кора и древесная гниль, отходы деревообработки (опилки, щепа и др.));
  • сельскохозяйственные отходы (солома и ботва растений);
  • городской мусор.

Рис. 6. Схема использования горючих газов металлургического производства

К тепловым ВЭР относятся физическое тепло продукции, отходов, побочных и промежуточных продуктов, образующихся в технологических агрегатах (установках), которое не полностью утилизируются в самом агрегате-источнике ВЭР, но используется или может быть использовано для теплоснабжения других потребителей.

В этом качестве используется теплота:

  • уходящих дымовых газов топливопотребляющих установок (рис. 7);
  • отходящих газов технологических установок;
  • избыточное тепло жидких и газообразных продукционных потоков;
  • конденсата, не подлежащего возврату на котельные и ТЭЦ;
  • охлаждающей воды, в том числе и в системах оборотного водоснабжения;
  • организованные вентиляционные выбросы;
  • сточные воды и другие.

Рис. 7. Схема вторичного использования теплоты отходящих газов

Энергетические ресурсы Российской Федерации

1.1 Состав ТЭК России

1.2 Роль и значение ТЭК для экономики и внешней торговли России

2. Современная энергетическая политика России

2.1 Проблемы и угрозы энергетической безопасности России

2.2 Энергетическая безопасность и энергетическая политика России

Заключение

Список источников

В энергетическом секторе мирового хозяйства ведущую роль играют топливно-энергетические ресурсы — нефть, нефтепродукты, природный газ, каменный уголь, энергия (ядерная, гидроэнергия).

Среди топливно-энергетических ресурсов особое место занимают нефть и природный газ. Эта группа товаров сохраняют роль лидеров среди прочих товарных групп в международной торговле, уступая только продукции машиностроения.

Россия играет ключевую роль на мировом рынке энергетических ресурсов.

Наша страна выступает одним из гарантов общей энергетической безопасности и стабильности мира в долгосрочной перспективе, т.к. доля России в мировом производстве нефти более 12%, природного газа около 30%, угля около 7%. Суммарно на Россию приходится 10,5% производства первичной энергии.

Для самой России топливно-энергетический комплекс (ТЭК) приносит более 50% доходов федерального бюджета.

Также сегодня ТЭК обеспечивает 25% валового внутреннего продукта и 30% объема промышленного производства в стране. Темпы добычи нефти и газа в России все нарастают, так добычи природного газа в России к 2010 г. может составить 645-665 млрд. м³., а к 2020 г. возрасти до 710-730 млрд. м³. А по другим прогнозам она напротив может упасть на 30-50%.

В настоящее время, в силу сырьевой ориентации российской экономики наличие ТЭР стало основой успешного развития регионов РФ, обладающих ими.

С ними напрямую связано благосостояние всех граждан России, такие проблемы, как безработица и инфляция. Возросшее значение ТЭР в развитии нашей страны обусловило пристальный интерес к ним со стороны общества и правительства, а появившиеся в последние десятилетия проблемы отрасли становятся проблемами каждого гражданина России.

Эффективная энергетическая политика для России имеет стратегическое значение, отсюда и высока актуальность данной темы.

Цель работы — анализ современного состояния энергетического сектора и рассмотрение энергетической политики России.

Задачи:

Определить роль и значение энергетического сектора для России;

Проанализировать современное использование энергетических ресурсов и определить проблемы связанные с их использованием;

Рассмотреть основные направления перспективного развития энергетической политики России.

В настоящее время энергетическая безопасность России признана одним из приоритетов национальной политики.

Появились специализированные публикации и нормативные документы по проблеме. Для написания этой работы использовались такие труды как: «Энергетика России», 2008; «Энергетическая безопасность России», 2004; «Реформирование энергетики и энергетическая безопасность», 2006 и другие работы.

При написании работы использовались последние статистические данные Госкомстата РФ, аналитического центра «Минерал», а так же Федерального агентства по недропользованию РФ.

Как разные страны мира выполняют планы по энергопереходу

Страны по всему миру поставили себе амбициозные задачи по переходу на возобновляемую энергию. Цели стали частью и Парижского соглашения — к 2030 году решения с нулевым выбросом углерода могут быть конкурентоспособными в секторах, на которые приходится более 70% глобальных выбросов. Сделать это планируется за счет энергетического перехода — процесса замены угольной экономики возобновляемой энергетикой. В 2020 году, несмотря на пандемию и экономическую рецессию, многие города, страны и компании продолжали объявлять или осуществлять планы по декарбонизации.

Как государству продвигать экологическую повестку

Ожидается, что в 2021 году Индия внесет самый большой вклад в развитие возобновляемой энергетики. Здесь планируют запустить ряд ветряных и солнечных проектов.

В Евросоюзе также прогнозируется скачок в приросте мощностей в 2021 году. Здесь даже в условиях пандемии не забывают о Green Deal — крупнейшей в истории ЕС коррекции экономического курса. Цель проекта — сформировать в ЕС углеродно-нейтральное пространство к 2030 году. Для этого планируется сократить на 40% объем выбросов парниковых газов от уровня 1990 года и увеличить долю энергии из возобновляемых источников до 32% в общей структуре энергопотребления. Как посчитала Еврокомиссия, достичь этих задач можно будет с помощью ежегодных инвестиций в размере €260 млрд. Доля ВИЭ в энергосистеме ЕС также постоянно растет. Так, около 40% электроэнергии в первом полугодии 2020 года в ЕС было произведено из возобновляемых источников.

Пока же в лидерах инвестиций в развитие возобновляемой энергетики — Китай, США, Япония и Великобритания. С тех пор, как BloombergNEF начал отслеживать эти данные, глобальные инвестиции в ветровую и солнечную энергетику, биотопливо, биомассу и отходы, малую гидроэлектроэнергетику увеличились почти на порядок. В годовом выражении вложения в чистую энергию выросли с $33 млрд до более чем $300 млрд за 20 лет.

Китай за десять лет стал главным производителем оборудования для возобновляемой энергетики. В первую очередь, речь идет о солнечных панелях. Семь из десяти крупнейших мировых производителей солнечных батарей — это китайские компании. В целом развитие технологий удешевило стоимость строительства новых объектов ВИЭ. Это приближает планы Китая стать углеродно нейтральным к 2060 году.

Ставка на солнце и уголь: два лица энергетики Китая

Серьезных шагов в сторону энергоперехода ожидают и от президента США Джо Байдена. Он не только вернул страну в Парижское соглашение, но и заявил о том, что намерен добиться чистых выбросов парниковых газов и перехода на 100% экологичной энергии к 2050 году.

Также к 2050 году планируют использовать только ВИЭ Япония, Южная Корея, Новая Зеландия и . Прошедший 2020 год уже стал самым экологичным для энергосистемы Великобритании со времен промышленной революции. Страна целых 67 дней смогла обходиться без угля. От традиционных источников энергии Британия планирует отказаться уже к 2025 году.

Активно развиваются ВИЭ в Испании — по прогнозам, сектор только солнечной энергетики в стране будет расти примерно вдвое быстрее, чем в Германии.

В 2020 году Шотландия получила 97% электроэнергии из возобновляемых источников. С помощью произведенной «зеленой» энергии получилось обеспечить электронужды более чем 7 млн домохозяйств. Шотландия планирует стать углеродной нейтральной уже к 2030 году.

Этот же год выбран временем полного отказа от традиционной энергетики для Австрии, а Саудовская Аравия запланировала к 2030 году получать 50% электроэнергии от ВИЭ.

Национальные цели по доле ВИЭ среди источников энергии

(Фото: REN21)

Полная версия отчета Renewables 2020 в формате PDF (см. стр. 57)

Состав ТЭК России

Топливно-энергетический комплекс (ТЭК) России объединяет отрасли по добычи топливно-энергетических ресурсов и производству на их основе электроэнергии.

Топливно-энергетические ресурсы — запасы топлива и энергии в природе, которые при современном уровне техники могут быть практически использованы человеком для производства материальных благ.

К топливно-энергетическим ресурсам относятся: различные виды топлива: каменный и бурый уголь, нефть, горючие газы, горючие сланцы, торф, дрова; — энергия падающей воды рек, морских приливов, ветра; — солнечная и атомная энергия .

Таблица 1.

Топливно-энергетический потенциал РФ

Главные для России виды ТЭР — топливные (природный газ, нефть, уголь), объем их производства приведен в таблице 2.

Таблица 2.

Показатели динамики добычи первичных ТЭР.

Анализируя основные показатели производства ТЭР за последние годы, можно отметить, что начиная с 1992 года добыча ТЭР в стране снижалось.

С 1997 году впервые получен прирост добычи. В настоящее время по добычи ТЭР Россия достигла докризисного периода (1991) и продолжает их наращивать, хотя, с учетом экономического кризиса и снижения спроса в мире на энергоносители, можно прогнозировать некоторое снижение объемов добычи ТЭР в России в ближайшие годы .

Так же к группе топливных ресурсов относится торф и горючий сланец.

Еще один вид — ядерное топливо. Топливом для атомных электростанций является уран.

Наша страна является лидером по производству обогащенного ядерного топлива и занимает 40 процентов его мирового рынка.

Российские газоцентрифужные разделительные заводы обеспечивают потребности в ядерном топливе не только собственных потребителей, но и примерно трети всех АЭС в мире. Однако по запасам урановых руд, Россия уступает лидерам (США, Австралии, Бразилии). После распада СССР и потери крупнейших месторождения в Средней Азии и Украине в РФ добывается 3000 тонн урана в год, нехватка сырья устраняется за счет экспорта, так в 2008 году было заключено соглашение о ежегодной закупке 4500 тонн уранового концентрата в Австралии .

Гидроэнергетические ресурсы еще один существенный энергетический ресурс России.

На территории нашей страны сосредоточено около 9% мировых запасов гидроресурсов. По обеспеченности гидроэнергетическими ресурсами Россия входит в число лидеров (второе место).

Энергетический топливный комплекс Россия

Общий валовой гидроэнергопотенциал России оценивается в 2900 млрд кВт-ч годовой выработки электроэнергии. Технически достижимый уровень использования гидроэнергоресурсов оценивается в 70% от указанной цифры. В настоящее время уровень освоения гидропотенциала России составляет всего 20%, притом, что Россия занимает второе место в мире по запасу гидроресурсов.

На рисунке 1 представлен топливно-энергетический баланс России за 2008 год.

Рис.1. Топливно-энергетический баланс России

Таким образом, Россия богата разнообразными энергетическим ресурсами и является мировым лидером по их добычи. Однако, используются они не равномерно.

На рисунке представлен топливно-энергетический баланс России. Видно, что в нем преобладают природный газ, нефть и уголь. На другие виды топливно-энергетических ресурсов, в том числе альтернативные источники приходится всего 8,7%.

Ядерная энергия

Ядерная энергия

Международное агентство по атомной энергии оценивает оставшиеся ресурсы урана равным 2500 ZJ. Это предполагает использование реакторов-размножителей , которые способны производить больше делящегося материала, чем они потребляют. По оценкам МГЭИК, в настоящее время доказанные экономически извлекаемые запасы урана для реакторов с прямоточным топливным циклом составляют всего 2 НДж. Окончательно извлекаемый уран оценивается в 17 НДж для прямоточных реакторов и 1000 НДж для реакторов репроцессинга и реакторов-размножителей на быстрых нейтронах.

Ресурсы и технологии не ограничивают способность ядерной энергетики способствовать удовлетворению спроса на энергию в 21 веке. Однако политические и экологические опасения по поводу ядерной безопасности и радиоактивных отходов начали ограничивать рост этого энергоснабжения в конце прошлого века, особенно из-за ряда ядерных аварий . Опасения по поводу распространения ядерного оружия (особенно плутония, производимого реакторами-размножителями) означают, что международное сообщество активно противодействует развитию ядерной энергетики такими странами, как Иран и Сирия .

Хотя в начале 21 века уран является основным ядерным топливом во всем мире, другие виды топлива, такие как торий и водород, исследуются с середины 20 века.

Запасы тория значительно превышают запасы урана, и, конечно, водород в изобилии. Многие также считают, что его легче получить, чем уран . В то время как урановые рудники закрыты под землей и поэтому очень опасны для горняков, торий добывается из открытых карьеров, и, по оценкам, его примерно в три раза больше, чем урана в земной коре.

С 1960-х годов торий сжигали на многочисленных объектах по всему миру .

Термоядерная реакция

Альтернативы для производства энергии путем синтеза водорода изучаются с 1950-х годов. Никакие материалы не могут выдерживать температуры, необходимые для воспламенения топлива, поэтому его необходимо ограничивать методами, не использующими никаких материалов. Магнитное и инерционное удержание являются основными альтернативами ( Cadarache , термоядерный синтез с инерционным удержанием ), оба из которых являются горячими темами исследований в первые годы 21 века.

Сила термоядерного синтеза — это процесс, приводящий в движение солнце и другие звезды. Он генерирует большое количество тепла за счет плавления ядер изотопов водорода или гелия, которые могут быть получены из морской воды. Теоретически тепло можно использовать для производства электроэнергии. Температура и давление, необходимые для поддержания плавления, делают процесс очень трудным для контроля. Теоретически Fusion может поставлять огромное количество энергии при относительно небольшом загрязнении окружающей среды. Хотя и Соединенные Штаты, и Европейский союз, а также другие страны поддерживают исследования в области термоядерного синтеза (например, инвестируют в установку ИТЭР ), согласно одному отчету, неадекватные исследования остановили прогресс в исследованиях в области термоядерного синтеза за последние 20 лет.

Тепловые электрические станции – ТЭС

На тепловых электростанциях России производится примерно 70% всей электрической энергии. Они работают на мазуте, газе, угле, а в определенных местностях используется торф и сланцы.

Все ТЭС можно условно разделить на два основных вида. Первый вариант является так называемым паротурбинным, где первичным двигателем служит паровая турбина. Эти устройства могут быть конденсационными (КЭС), вырабатывающими только электроэнергию, и теплоэлектроцентралями (ТЭЦ), производящими не только электричество, но и тепло. Коэффициент полезного действия ТЭЦ составляет 60-70%, а у КЭС этот показатель равен 30-40%. Основным недостатком тепловых станций считается их обязательная привязка к потребителям тепла.

Положительных качеств у тепловых электростанций значительно больше. Они свободно размещаются на всех территориях, где имеются природные ресурсы и не подвержены сезонным колебаниям погодных условий. Однако, используемое топливо является не возобновляемым, а сами установки негативно влияют на экологическую обстановку. Российские ТЭС не имеют достаточно эффективных систем очистки выходящих газов от вредных и токсичных веществ. Более экологичными считаются газовые установки, но трубопроводы, проложенные к ним, наносят непоправимый вред природе.

Электростанции, расположенные в европейской части Российской Федерации, работают в основном на мазуте и природном газе, а в восточных районах они располагаются возле месторождений угля, добываемого открытым способом. Большинство установок относится к государственным районным электростанциям – ГРЭС, входящим в Единую энергосистему страны.

Последствия сокращения ресурсов для предприятий

По моему мнению, для снижения расходов на оплату воды и энергоресурсов, скорее всего, будут введены лимиты потребления, что может негативно отразиться на эффективности работы предприятий. Сокращение ресурсов может привести к нехватке мощностей на производстве, соответственно, объемы готового продукта значительно уменьшатся.

Интересно: Изменения в системе оплаты ЖКУ приведут к росту тарифов ЖКХ.

Для снижения потребления энергоресурсов и воды бюджетным организациям потребуется помощь региональных властей и дополнительное финансирование от привлеченных инвесторов.

На сегодняшний день регионы не совсем готовы к снижению потребления энергоресурсов и воды. Поэтому Правительство перенесло сроки разработки методических рекомендаций со стороны Минэнерго по энергосбережению и установки уровня экономии потребления ресурсов со стороны местных органов государственной власти в субъектах РФ.

ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ И ИХ ИСПОЛЬЗОВАНИЕ

2.1. ОБЩИЕ ПОЛОЖЕНИЯ

Энергетическими ресурсами называют выявленные природные запасы различных видов энергии, пригодные для использования в широких масштабах для народного хозяйства. Их следует отличать вообще от природных запасов, которые практически бесконечны — это солнечная и геотермальная

энергии, энергия океанов и морей, ветра, но эта энергия в обозримой перспективе в значительных масштабах применяться не будет. Основные виды энергетических ресурсов в современных условиях — уголь, газ, нефть, торф, сланцы, гидроэнергия, атомная энергия.

Энергетические ресурсы используют для получения того или иного вида энергии. Под энергией понимается способность какой-либо системы производить работу или тепло (Макс Планк). Соответственно, получение требуемого количества энергии связано с затратой некоторого количества ка-кого-либо рода энергетического ресурса.

Энергоресурсы, также как и энергия, могут быть первичными и вторичными. Первичные — ресурсы, имеющиеся в природе в начальной форме. Энергия, получаемая при использовании таких ресурсов, является первичной.

Среди первичных — выделяют возобновляемые и невозобновляемые.

Возобновляемые — восстанавливаются постоянно, например, гидроэнергия и энергия ветра, солнца и т. д.

К невозобновляемым — относятся те, запасы которых по мере их добычи необратимо уменьшаются, например уголь, сланцы, нефть, газ, ядерное топливо.

Подразделение на группы, а также перечень отдельных Первичных энергоресурсов, используемых в настоящее время, приведены ниже:

Ядерная энергия.  геотермальная  энергия,

Гравитационная энергия, энергия морских приливов.

Если исходная форма первичных энергоресурсов в результате превращения или обработки изменяется, то образуются вторичные энергоресурсы и, соответственно, вторичная энергия. Ко вторичным — относятся все первичные энергоресурсы после одного или нескольких превращений. Вторичные энергоресурсы — это большая часть топливных форм (бензин и другие нефтепродукты, электричество и т. д.), которые представлены ниже :

Для соизмерения ресурсов и определения действительной экономичности их расходования принято использовать понятие «условное топливо». Его низшую рабочую теплоту сгорания Qp принимают равной 29300 ГДж/кг (7000 Гкал/кг). Зная теплоту сгорания и количество натурального топлива, можно определить эквивалентное количество тонн условного топлива, (т у. т.):

Где Внат — количество натурального топлива, т.

При оценке ресурсов газа в условном топливе в формулу (2.1) Виат подставляется в тыс. м3, а теплота сгорания натурального топлива принимается в килоджоулях на 1 м3.

При необходимости оценки энергоресурсов в том числе гидроресурсов в кВт ¦ ч — 1 кВт • ч приравнивается к 340 г у. т.

В современных условиях 80—85 % энергии получают, расходуя иево-зобновляемые энергоресурсы: различные виды угля, горючие сланцы, нефть, природный газ, торф, ядерное горючее.

Преобразование топлива в конечные виды энергии связано с вредными выбросами твердых частиц, газообразных соединений, а также большого количества тепла, воздействующих на окружающую среду.

Возобновляемые энергоресурсы (исключая гидроэнергетические) не нуждаются в транспортировке к месту потребления, но обладают низкой концентрацией энергии, в связи с чем преобразование энергии большинства возобновляемых источников требует больших затрат материальных ресурсов и, следовательно, больших удельных затрат денежных средств (руб/кВт) на каждую установку.

Возобновляемые источники энергии в экологическом отношении обладают наибольшей чистотой.

Из возобновляемых энергоресурсов в настоящее время в основном используются гидроэнергия и в относительно малых количествах энергия солнца, ветра, геотермальная энергия.

Из всех видов потребляемой энергии наибольшее распространение получила электроэнергия.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector